

Managing basal stem rot in oil palm by converting infected logs to biochar

Key details

L ocation Papua New Gui	inea	
Duration Start Jul 2020		End Jun 2022
Budget	AUD 159,88	8
Commissioned The University of	d organisation of Queensland	n <u>I</u>
Partners Papua New Gui Association; Th	inea Oil Palm e University o	Research f Queensland
Project Leader Dr Agnieszka M	ludge	
ACIAR Resear Dr Eric Huttner	ch Program N	lanager
Program	<u>Crops</u>	
Project code	CROP/2019	/147

Overview

This project aimed to explore the feasibility of biochar as a method for removing infected material from oil palm blocks to inform a business case for oil palm derived biochar

production in Papua New Guinea.

Oil palm is a long-term perennial crop of great economic importance in South-East Asia and the Pacific, providing much needed income to both large plantations and smallholders. Unfortunately, basal stem rot, caused by the fungus 'Ganoderma boninense', poses an increasingly major threat to the oil palm industry.

The project aimed to establish whether it is technically feasible and economically sensible to support the sanitation of oil palm plantations infected by Ganoderma, through the removal of infected logs and wastes and their conversion to biochar in Papua New Guinea.

Project outcomes

- Removing all infected material from blocks.
- Mitigating climate change through carbon sequestration.
- Enhancing soil quality through improved cation exchange and water retention capacity.
- Enhancing beneficial soil micro-organisms.
- Creating new business opportunities, for example to create peat-like but sustainable, stable and carbon-sequestering high value media products from waste for use in intensive industries such as nursery and floriculture production.

