ACIAR project development guidance – capacity building

One of ACIAR’s overarching development objectives is ‘Building scientific and policy capability within our partner countries’. Many ACIAR projects therefore include elements of research capacity building. This guidance aims to support ACIAR project leaders and project team members, to help plan this capacity building and capture it in project reporting.

The ‘eight steps’ below represent an idealised route to incorporating capacity building during project and proposal development, with links to the relevant section of the ACIAR project proposal document. They are intended as guidance rather than a rigid framework.

How important is research capacity building in your project? This guidance can help with the planning, implementing and reporting, whether it is a single activity within the project or major component.

<table>
<thead>
<tr>
<th>There are four essentials for successful research capacity building:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Awareness of the current enabling (or constraining) environment</td>
</tr>
<tr>
<td>• Ownership of the capacity building agenda by the respective partners, underpinned by a shared knowledge of capacity strengths and skill gaps</td>
</tr>
<tr>
<td>• Appropriate selection of individuals across all capacity building activities, consistent with ACIAR policies and values (ie. gender equity, social inclusion)</td>
</tr>
<tr>
<td>• The right people for the job – committed project team members, external expertise when needed</td>
</tr>
</tbody>
</table>

Research capacity building is addressed at three levels:

Individual capacity building – Formal or informal capacity building activities that strengthen the abilities and agency of individual partner country researchers. Most of ACIAR’s research capacity building efforts within projects are at this level.

Organisational capacity building – Activities designed to strengthen a partner organisation in its abilities to achieve its objectives and fulfil its role in the national agricultural innovation system. As the immediate supporting environment for individual researchers and research systems, this should always be considered alongside individual capacity building.

The **enabling environment** – The broader system within which ACIAR and its partners operate, and which supports (or not) the abilities of individuals and organisations to successfully use their skills and capabilities. This may be difficult to address at project level, but targeted interventions (addressing a single policy, or regulation), and building capacity for research engagement with policy processes, may bring good results.

August 2020. ACIAR encourages researchers to provide constructive feedback about research teams experiences in using this document, including what worked and what didn’t work. Your ongoing feedback will help ensure the guidelines remain a useful resource for all researchers. Please send your comments to joy.hardman@aciar.gov.au
Eight steps to research capacity building within ACIAR projects

1. **In consultation with the relevant ACIAR Country Office, identify all project partners** who will be involved in capacity building, directly or indirectly. Ensure a **participatory process of engagement** so that partners are able to contribute meaningfully and share ownership of the capacity building agenda.

2. **Project team and partners** **carry out a research capacity analysis** (see Tool 1). **Capacity Built**
 - Capacity analysis clarifies capacity building needs, interventions and responsibilities, and provides the baseline for M&E.

3. **Project team and partners** use the **activities tool** (Tool 2) to help identify the most appropriate options for research capacity building activities. **Capacity Built**
 - Consider how a combination or succession of capacity building activities may be needed to reinforce and sustain learning.

4. **Make sure research capacity building is explicit in the project proposal**, at the appropriate level. **Implementation**
 - How important is research capacity building in your project? If it is combined with technical research, describe how the capacity building activities contribute to the research questions. Construct an objective if the capacity building operates alongside (rather than feeds into) the technical research. Whatever the level, make sure all research capacity building activities are explicit and well described in the proposal.

5. **Develop a theory of change** for the project. This can be complex, but in the most basic form it shows how project activities create outputs, which lead to outcomes, which over time contribute to impacts. **Project outcomes**
 - How will research capacity building contribute to the project’s outcomes and impacts? Make sure capacity building activities, outputs and outcomes are clear in the project logic.

6. **Identify indicators** for the outputs and outcomes expected from research capacity building activities, so that the project team and partners can monitor, evaluate and learn as the project progresses. **Monitoring, Evaluation & Learning**

7. **Monitor, evaluate and adapt** capacity building interventions as the project progresses. Make sure this is captured in all project reporting. **Annual Reports**

We provide two tools below, that may be useful in planning and implement research capacity building within ACIAR projects. There are many other useful tools – for example in [this publication](#) from the Tropical Agriculture Platform, or this [learning module](#) from FAO.
Tool 1. Capacity analysis framework (adapted from FAO 2015).

<table>
<thead>
<tr>
<th>Level</th>
<th>Capacity area</th>
<th>Existing situation – where are we now? (BASELINE for M&E)</th>
<th>Desired situation – where do we want to be?</th>
<th>Capacity development needs</th>
<th>Interventions – what is the best way to get there? (see Tool 2)</th>
<th>Responsibilities – who needs to do what?</th>
<th>Priority (1 = high, 4 = low)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Tactical skills (project-specific, technical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strategic skills (e.g. broader research skills)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional confidence and motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisational</td>
<td>Strategic leadership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organisation/management capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operational capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human and financial resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enabling environment</td>
<td>Policy and regulatory framework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economic framework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Governance and power structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>Individual capacity building options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Learning-by-doing** | • Informal
• Usually face-to-face
• May be long term, over the length of the project
• May be combined with a study tour or placement (internship)
• A good way to reinforce skills learned, for example, through a short course
• Often ‘taken for granted’ and overlooked in project reporting | • The required skills, attitudes and experience within the team
• Commitment from all team members
• An atmosphere of professional respect and trust |
| **Mentoring** | • Informal
• Usually one-on-one
• Face-to-face or remote
• May be long term, over the length of the project
• May be combined with a study tour or placement (internship)
• Often ‘taken for granted’ and overlooked in project reporting | • Time commitment
• Mentoring skills
• Mutual respect and trust |
| **Workshop/short course** | • Formal group training
• Cost-effective and efficient
• Details of each activity should be fully reported in project reports: What is the objective? How are participants to be selected? Are gender and inclusion policies in place?
What approaches and methods are to be used? What are expected results and outcomes? What M&E methods will be used to assess outcomes?
• Awarding Certificates which outline expertise gained can be beneficial for career progress | • Tailor to partner/group needs, and cultural considerations
• May need external expertise (professional trainers)
• Post-workshop, reinforce new skills through learning-by-doing or integrating into participants’ practical work activities
• Provide continuing support post-workshop for improved outcomes and impacts |
| **Study tour** | • Comprises a combination of activities such as learning-by-doing, mentoring and professional networking, in an intensive experience
• Often conducted in Australia, or another partner country, where there are excellent facilities and high professional standards | • Tailor to partner (and individual) needs
• Complement with longer term interactions such as mentoring |
| **Placements (internships)** | • Similar to study tours, but of longer duration | • Same as study tours |
| **Formal qualifications** | • Awarding a formal qualification following a training activity may increase the commitment and motivation of individuals and partner organisations | • Partnership with an academic institution to provide accreditation |
| **Supporting student thesis research** | • A potentially powerful way to build research capacity while supporting project research outputs and outcomes
• Contributes to long-term project outcomes and impacts by embedding key skills within the partner country research system
• There may be opportunities to fund postgraduate students through ACIAR’s John Allwright Fellowship or ACIAR’s Pacific scholarship program | • Commitment (a formal agreement) from the host academic institution
• External co-funding of the students’ non-research costs
• See also ‘Guidelines for integrating post-graduate research students in ACIAR projects’ |
| **Professional networking** | • Builds professional confidence and motivation
• Contributes to long-term outcomes and impacts, when it continues beyond the life of the project | • For formal networks, a long-term organisational partner or other arrangements to support beyond the project life |
Organisational capacity building options

<table>
<thead>
<tr>
<th>Features</th>
<th>Needed for success</th>
</tr>
</thead>
</table>
| **Group/cohort training** | • Potential to catalyse change in an organisation – but may need sustained efforts beyond a single project
• Builds professional confidence and motivation in a cohort of staff, which may subsequently contribute to organisational change
• Can be done within the partner organisation (in country), or hosted by a third party (in Australia or elsewhere)
• Clear commitment from the partner organisation
• Likely to need external expertise (professional trainers) |
| **Support for senior managers** | • Helps to develop partner ownership of the process
• Encourages managers and decision-makers to support the returning trainees and provide an enabling organisational environment for further change
• Clear commitment from the partner organisation
• A good level of trust between organisations |
| **Infrastructure investment** | • Specific equipment may be necessary for project technical outputs but complementary investment can greatly increase effectiveness in capacity building and other outcomes
• Cost-effectiveness may be increased by designing dual-purpose (research-and-training) facilities
• May require specific agreements relating to ownership and access, during and after the project
• Partner organisation must have the resources (expertise and financial) to maintain and operate facilities after project |

Enabling environment capacity building options

<table>
<thead>
<tr>
<th>Features</th>
<th>Needed for success</th>
</tr>
</thead>
</table>
| **Targeted efforts to address a policy/regulation** | • Specifically targeted interventions by researchers may support or catalyse enabling changes in the policy or regulatory environment
• Well targeted and defined interventions
• Clear understanding of policy-making processes – especially how evidence informs policy
• Clear strategy to identify entry points and opportunities for change |
| **Multi-stakeholder platform (e.g. a ‘policy forum’)** | • Facilitates research engagement in policy processes
• Builds capacity of researchers to engage in policy processes
• Strengthens the role of evidence in policy
• Additional skills (non-research, e.g. communication, advocacy) for effective engagement by researchers
• Clear understanding of policy-making processes – and who is involved |
| **Innovation platform** | • A potentially powerful way to build the broader partnerships necessary to support participatory action research and other multi-stakeholder models of innovation
• Leads to new ways of conceptualising and describing research and innovation processes
• A deep understanding of culture and existing institutional and organisational relationships
• Appropriate arrangements and agreements to bring together diverse groups of people and organisations |
| **Influencing the agricultural education system** | • A potentially powerful entry point for catalysing change in agricultural innovation systems over the long term
• Appropriate for introducing new skills and disciplines, and new paradigms for research and innovation
• May be sufficient to introduce new modules into existing curricula but likely to require enabling changes in ways of working (e.g. across disciplines, partnerships with outside organisations etc.)
• A broad understanding of national innovation systems (and the role of different kinds of education)
• An understanding of decision-making processes (accreditation, curriculum development etc.)
• Commitment – supported by appropriate arrangements and formal agreements |