oryzae, pelargonii, and begoniae) also were tested to verify the specificities of their respective antibodies.

In studying the serological groups of bacterial plant pathogens, the *Erwinia* species, *E. carotovora* and *E. chrysanthemi*, were found to be serologically heterogeneous, confirming earlier studies with polyclonal antisera (Dickey et al. 1984). Pathovars of *X. campestris* (*campestris, citri, dieffenbachiae*) [Alvarez et al. 1985; Bonner R.L. 1988; Bonner et al. 1987; and unpublished data] and *vesicatoria* have several serological subgroups. In contrast, other pathovars (pelargonii, begoniae, oryzae, oryzicola, and *C.m. michiganense*) appear to be relatively uniform (Benedict et al. 1989, 1990 and unpublished data).

The homogeneity and heterogeneity of bacterial pathogens with respect to surface antigens is indicated by the numbers of the mAbs that are required to identify a particular taxon. The pathovars *X.c. pelargonii*, *begoniae*, *oryzae*, *oryzicola*, and the tomato canker pathogen, *C.m. michiganense*, all can be detected by a single mAb, indicating that the strains of the pathovar share a common epitope. In contrast, other pathovars of *X. campestris* (*campestris, dieffenbachiae, citri, and vesicatoria*) and the species, *X. albilineans*, do not share a single epitope, and a panel of mAbs must be generated to detect all strains of the taxon.

Those pathovars that are detected by a single epitope in general are those that also infect a single host. For example, *X.c. pelargonii* is quite specific to its host, pelargonium; pathovar *begoniae* affects only begonia; and pathovars *oryzae* and *oryzicola*, principally affect rice.

These pathovars also share a single epitope that identifies the taxon. In contrast, *X.c. campestris* causes disease on a wide range of cruciferous hosts, indicating variation in the genetic profile of the pathovar, and mAbs indicate that the pathovar is serologically heterogeneous. Likewise, *X.c. citri*, which affects a wide range of citrus species, also varies with respect to surface antigens (Benedict et al. 1985).

The variability of strains of *P. solanacearum* permits us to predict that serological heterogeneity will be found when mAbs are generated to strains of this species. First, the bacterial wilt pathogen has a wide host range, and strains differ in their host specificities as indicated by the races that have been described for the species (Buddenhagen and Kelman 1964). Strains have been grouped into biovars to account for the biochemical variability, into pluge-types that vary in bacteriophage sensitivity, and into restriction fragment length polymorphism (RFLP) groups that provide a measure of their genetic variability (Buddenhagen and Kelman 1964; Cook et al. 1989; Hayward 1964). Given this information, we would expect to find mAbs that will group the strains with respect to their surface antigens. In initial studies, we already have detected antibodies that separate several race 1 strains and a groundnut strain from strains of race 2 (the banana race), but extensive screening is required to verify these specificities. Perhaps of greater significance are two mAbs that in initial studies have reacted predominantly with strains which by RFLP analysis of Cook et al. (1989) are in Division II.

What does the analysis of surface antigens indicate about the inherent variability of a bacterial plant pathogen? Using highly specific mAbs that react with a single epitope much information is gained that was previously obscured by analysis with polyclonal antisera. Analysis with a panel of mAbs might provide data on a) the existence of subgroups (serotypes), b) the homogeneity or heterogeneity of a bacterial population in a given area, c) the geographical distribution of serotypes, d) the possible origin of inoculum in a disease outbreak, e) the spread of serotypes in a field plot, f) the epidemiological fitness of a subpopulation, g) the potential relationships between serotype and virulence, h) the relationships of surface antigens to genetic characteristics (as determined by RFLP analysis). Finally, when

Figure 2: Immunoelectron micrograph of Xanthomonas campestris pv. pelargonii reacted with a 1:10 dilution of mAb Xpel-1.
all this information is combined, one may be able to speculate as to the possible geographic centres of disease, asking where the diseases originated and what determines their spread.

Three pathovars of _X. campestris_ (campestris, citri, and oryzae) serve as illustrations of the above applications, because they represent the various situations that have been encountered when generating mAbs to bacterial plant pathogens.

The first, _X.c. campestris_, is a heterogeneous pathogen that cannot be detected with a single antibody; rather, three pathovar-specific antibodies were needed to encompass the range of strains that make up the pathovar (Alvarez et al. 1987). That is, a positive reaction with one or more of the four pathovar-specific mAbs (X9, X13, X17, X21) is used to identify 98% of the 1000 strains of _X. campestris_ tested. In the first study of 200 strains the pathovar was separated into six serogroups based on reactivity to selected mAbs. The geographical distribution of these serogroups also varied. The largest percentage of type 5 strains was encountered among strains originating in the states of Georgia and North Carolina, whereas type 1 and 2 strains were prevalent among strains isolated from California, Japan, and Hawaii on the island of Maui.

Monoclonal antibodies also provided insight into the geographical variation among strains of _X.c. oryzae_, the cause of bacterial leaf blight of rice. In contrast to _X.c. campestris_, all tested strains of _X.c. oryzae_ shared a single epitope (antigenic determinant) that could be identified by a single mAb (Xco-1). Typical blight strains, prevalent throughout Asia, all reacted with Xco-1, and most reacted with a second mAb, Xco-2. In 1987, an unusual leaf blight of rice was observed on rice cultivar Lemont in Texas and Louisiana. All the pathogenic _X.c. oryzae_ strains associated with atypical blight reacted with Xco-1, and some reacted with Xco-2. However, a new mAb (Xco-5) was found that reacted only with the U.S. strains and clearly distinguished them from the typical Asiatic leaf blight strains.

For _X.c. citri_, again a different situation occurs; for this pathogen, various pathotypes exist that can be identified by reactions on various citrus hosts as well as by bacteriophage sensitivities, plasmid profiles, and restriction fragment length polymorphisms. In the case of citrus bacterial canker, several forms of the disease occur. The typical citrus bacterial canker type A strains cause a severe disease on citrus world-wide and are detected by two antibodies, A1 and A2, that do not react with the mild strains. Citrus canker B, found principally in Argentina on lemon and grapefruit, is a milder disease caused by strains that react with several 'B' antibodies. Strains causing citrus canker C, a mild disease found on _Citrus aurantifolia_ (key lime) in Brazil, are detected by mAbs C1 and C2, indicating that the B and C strains are serologically related.

Citrus bacterial spot, originally attributed to a possible variant of _X. c. citri_, and now called _X.c. citrumelo_, is serologically distinct from all the citrus canker strains and can be identified by a different panel of mAbs. Finally, avirulent xanthomonads found on leaf surfaces of citrus and other hosts reacted with none of the _citri_ or _citrumelo_ specific mAbs but did react with the genus-specific mAbs, X1 and X11. The occurrence and potential significance of such xanthomonads can be studied further with these detection tools.

In comparing RFLP patterns, host plant reactions, and serological groupings, interesting correlations were apparent. In the case of citrus bacterial spot, RFLP patterns separated the aggressive strains from moderately and non-aggressive strains, and the RFLP groupings corresponded to those formed by serological analysis with mAbs. Similar correlations were found through RFLP and serological analysis of _X. campestris_ strains having various levels of virulence on cabbage.

Following the above examples, a serological analysis of the groundnut strains of _P. solanacearum_ using mAbs in combination with other methods of characterisation may generate some interesting and useful information. Since mAbs may be carefully selected to reveal either a unique epitope of a particular strain or common epitopes among groups of strains, a panel of mAbs may be constructed and manipulated to determine the serological and biological relatedness of a subpopulation. In this manner, the groundnut strains may be compared to race 1 strains and other strains within the species.

Key aspects of a detailed serological analysis are the collection of strains and the confirmation of pathogenicity. Large numbers of _P. solanacearum_ strains collected from groundnut in China, Indonesia and other geographical
regions, representing the range of races and biovars, would be needed to make the appropriate comparisons. Other genera and species as well as epiphytes from groundnut, representative of the biological niche, should be included in the screening procedures to verify the specificity of the selected mAbs.

Procedures for generating and selection of genus and pathovar-specific mAbs for bacterial plant pathogens have been well-documented. This involves immunisation, fusion of mouse spleen cells with mouse myeloma cells to generate hybridomas, screening, cloning, rescreening, production of ascites, and rescreening with large numbers of strains to confirm the desired specificity. Finally, the analysis of the antigens and the development of rapid diagnostic tests will facilitate detection, identification, and epidemiological studies. In view of the information already generated for other bacterial plant pathogens, a study of the groundnut strains of *P. solanacearum* appears to be quite promising.

References

Further Reading

Molecular Biology and Research on
Pseudomonas solanacearum

Qing-Sheng Ma*

Abstract

Pseudomonas solanacearum is a Gram-negative bacterial pathogen which can cause wilting of many plants. Techniques of genetic manipulation have been used to study and elucidate the pathogenesis of wilt induction. With the application of transposon (Tn5) mutagenesis, site-directed mutagenesis, and construction of genomic libraries and gene cloning, a number of *P. solanacearum* genes involved in pathogenesis were identified and their functions studied. Genetic evidence for the role of EPS in the wilting process was contradictory, but it seems that EPS production alone is not sufficient for pathogenesis. Genes encoding endopolygalacturonase (pgIA) and α,1,4-endoglucanase (egl) have been cloned, however their function in pathogenicity appears only to enhance the wilting process instead of being absolutely necessary. Progress has been made in the cloning of genes controlling pathogenicity and hypersensitivity in *P. solanacearum*. Two types of genes; (hrp genes required for HR induction, and dsp genes modulating aggressiveness), were cloned in a 25 kb region of plasmid pVir2. The DNA sequences in the insert of pVir2 were found to be present and to show a RFLP pattern in many *P. solanacearum* strains. Experimental data suggest that there are independent positive factors determining host range in *P. solanacearum* rather than an avirulence gene system. Genes involved in host specificity were cloned in a 12.8 kb EcoRI fragment in plasmid pGX1252, which appeared to be unique to *P. solanacearum*.

All results indicate that there must be a considerable number of genes in *P. solanacearum* which are involved in the disease process. It is helpful to look at how these genes are regulated and interact with corresponding genes in plants.

Bacterial wilt caused by *P. solanacearum* is one of the most important, widespread and lethal bacterial diseases of plants. In tropical and subtropical areas this bacterial pathogen is destructive to many crop plants, such as potato, tobacco, tomato, groundnut and banana (Buddenhagen and Kelman 1964). Many wilt producing factors have been proposed to elucidate the mechanisms of pathogenesis. These factors include exopolysaccharide (EPS), IAA, pectic and cellulosytic enzymes etc. (Wallis and Truter 1978; Beckman et al. 1962; Husain and Kelman 1958a; Kelman and Cowling 1965). Since these data were mainly based on pheno-

* Guangxi Agricultural College, Nanning, Guangxi 530005, Peoples' Republic of China
(Boucher et al. 1985; Ma et al. 1988). Foreign genes (up to a size of 40 kb) can be introduced into \textit{P. solanacearum} by transformation at a frequency of 10^5 to 10^6 for a single marker, or by conjugation for plasmid vectors with mobilisation (Mob) function by a triparental mating method (Boucher et al. 1985; Ma et al. 1988; Xu et al. 1988). Recently electroporation was tested and shown to be able to introduce plasmid DNA into \textit{P. solanacearum} with a frequency of 10^2-10^3 transformants/µg DNA (Cheng, unpublished data). The stability of foreign plasmids in \textit{P. solanacearum} varies from strain to strain. It seems that P group broad host range vectors pLAFR1 and pLAFR3 are fairly stable in \textit{P. solanacearum} recipient cells (Ma et al. 1988; Xu et al. 1988) although an unstable situation was reported (Boucher et al. 1987).

Mutations may be induced by chemicals, UV radiation or by transposon insertions. Because the transposon-induced mutations have advantages for subsequent analysis, transposon mutagenesis has been widely used in \textit{P. solanacearum} genetic studies.

Transposons are discrete short DNA segments that determine resistance to one or more antibiotics and have the property of being able to insert into new sites of DNA replicons in the absence of the recA gene function (Kleckner et al. 1977). Many transposons can be inserted into a large number of sites in the bacterial genome. Some transposons, such as Tn7, appear to have 'hot spots' in the whole genome at which insertion events have occurred frequently; however, for some transposons such as Tn5, the distribution of insertion sites is more random (Berg 1977). In mutations caused by transposon insertions, the continuity of the affected gene is disrupted. Therefore, insertion mutations by transposons usually result in complete loss of the function encoded by the blocked gene. Since transposons carry drug-resistance determinants, any mutations caused by transposon insertions will result not only in the mutant phenotype but also in the drug-resistance phenotype specified by the inserted transposon. These two phenotypes are thus completely linked. They are transferred together in genetic crosses and lost together in reversion events. Transposons not only inactivate the gene into which they insert but also have a strong polar effect on the expression of genes in the same operon which are located downstream of the insertion site. Therefore, insertion mutations may be used to determine the extent of transcription units in uncharacterised gene clusters.

It is of particular importance that transposon mutagenesis provides a means to isolate mutants which have no readily scoreable phenotype (e.g. nodulation in \textit{Rhizobium} and pathogenicity in plant pathogens). These insertion mutants are generally single mutations and will lead to a complete loss of the gene function in question. In addition, a scoreable phenotype (drug-resistance) will be associated with the mutation, which can be used to map the mutation genetically or physically.

There are a number of ways to deliver transposons into \textit{P. solanacearum}. Beringer et al. (1978) developed a general method for introducing transposon Tn5 into the genome of a wide variety of Gram-negative bacteria, in which a broad host-range plasmid (p1 group) carrying both phage Mu and a transposon Tn5 is conjugated from \textit{E. coli} into the recipient. Because the Mu-containing plasmid fails to replicate in the recipient, transposition events of the transposon from the Mu-containing 'suicide plasmid' into the recipient genome can be directly selected. Similar 'suicide' behaviour has been used to construct transposon Tn5-delivering plasmids pSUP1011 and pSUP2021 (Simon et al. 1983) which can successfully generate Tn5 insertion mutants of \textit{P. solanacearum} (Boucher et al. 1985; Denny et al. 1988; Xu et al. 1988). However, experience shows that different pathogens, or even different strains of a single species vary greatly in the ease with which Tn5 insertion mutants can be isolated. Sometimes the frequency of transposition events is too low to be identified (Turner et al. 1984).

The value of Tn5 mutagenesis lies also in the possibility of identifying and cloning genes which cause alteration in pathogenicity, but without obvious defects in growth in vitro. After Tn5 mutagenesis large numbers of colonies of mutagenised bacteria can be tested on plants, and Path- mutants can be selected; flanking genomic DNA sequences can be excised and cloned from the mutants and used as hybridisation probes to locate corresponding clones in a DNA library (Boucher et al. 1987).

Site-directed mutagenesis (Ruvkun and Ausubel 1981) is another important use for transposons. This method relies upon transposition events in \textit{E. coli} into the desired region.
of a segment of introduced DNA, followed by its return to the original host through a procedure called marker exchange; that is, by selecting for recombinants involving double homologous exchanges of the inserted and wild type DNA segments. After mutagenesis, insertion mutants in the original genome of bacteria result, and the function of the inserted region can be tested by observable phenotypic changes. This is particularly useful in providing genetic evidence for the role of suspected pathogenicity factors since a parallel observation of a phenotypic change and pathogenicity defect is not always a real reflection of their relationship (Denny et al. 1988; Roberts et al. 1988).

Construction of a gene library has become a routine task in gene isolation. In studies of *P. solanacearum*, cosmid vectors with a broad host range, such as pLAFR1 and pLAFR3 (Friedman et al. 1982) are widely used (Boucher et al. 1987; Ma et al. 1988; Xu et al. 1988). Cosmid libraries are maintained in *E. coli* strains and each library consists of, in general, several thousand clones each of which contains a 20-30 kb piece of *P. solanacearum* DNA joined to a vector. Genes of interest in these 20-30 kb DNA segments can be screened by hybridising with existing probes or by specially designed procedures, depending on the gene expression situation (Xu et al. 1988; Boucher et al. 1987). Sometimes the whole library is conjugated into a desired recipient either en masse with pooled library cultures, or through large numbers of matings, each with an individual clone (Ma et al. 1988). The resultant transconjugants are screened by special assays or by tests on plants.

Molecular Genetic Studies towards the Understanding of Pathogenicity

Exopolysaccharide (EPS) and Lipopolysaccharide (LPS)

In culture, wild type *P. solanacearum* strains produce copious amounts of EPS, a viscous, high molecular weight, neutral compound mainly composed of galactosamine (Buddenhagen and Kelman 1964; Sequeira 1985). Spontaneous avirulent mutants can be easily recognised by their red non-slimy colonies on a tetrazolium chloride/glucose rich medium whereas on the same medium the wild-type strain produces white to pink slimy colonies (Kelman 1954). It has been believed that EPS produced by *P. solanacearum* may play a key role in pathogenesis by interfering with water movement through vessels or pit membranes and result in the typical wilt symptoms (Buddenhagen and Kelman 1964; Van Alfen 1982; Husain and Kelman 1958b). However, evidence from genetic studies on involvement of EPS in pathogenesis is contradictory. Staskawicz et al. (1983) obtained an EPS-deficient red mutant of strain S-82 by IS50 insertion and found that it was no longer virulent on potato. But this mutation is pleiotropic, therefore the loss of EPS production was not completely responsible for the change in virulence, although the result suggested that EPS is important in pathogenesis. Using Tn5 mutagenesis Boucher et al. (1987) and Xu et al. (1988) obtained non-pathogenic (Vir-) mutants of the strains GMI1000 and K60 respectively. All of the Vir- mutants of GMI1000 and six out of eight Vir- mutants of K60 produced normal amounts of EPS, indicating that EPS production alone is not sufficient for pathogenesis. In addition, mutant types of both strains were identified that were deficient in EPS production when grown on agar medium but still able to wilt host plants, suggesting that EPS may not be the major factor in wilt pathogenesis (Xu et al. 1988; Boucher et al. 1987).

Denny et al. (1988) divided EPS mutants into EPSi (impaired in EPS production) and EPS- (EPS deficient), and found that the amount of EPS produced in planta by the EPSi mutants of strain AW1 was correlated with the severity of wilt symptoms. Their study showed that great care should be taken in characterising EPS-deficient mutants of *P. solanacearum* both in culture and in planta; they concluded that EPS production in tomato plants is required for typical wilt symptoms. However, Xu et al. (1988) reported that *P. solanacearum* K60 mutants that retained virulence to eggplant and tobacco, but produced no EPS either in culture or in planta, were obtained after Tn5 mutagenesis.

Less attention has been given to LPS, one of the peripheral components of the surface envelope of *P. solanacearum* (Sequeira 1985). Drigues et al. (1985) compared the composition of *P. solanacearum* lipopolysaccharide (LPS) of wild-type and rough mutant strains and found that both contained the same component sugars in their polysaccharide moieties, but differed greatly in the relative amount of each sugar. Since the mutation to rough phenotype is pleiotropic the nature of the genetic alteration is unknown.
So far, several clones containing \textit{P. solanacearum} DNA sequences involved in EPS production have been obtained, yet no detailed information about the function of these DNA sequences has been reported. More studies are needed to clear up the controversy over EPS involvement in pathogenesis.

Cell Wall Degrading Enzymes (Polygalacturonase and Endoglucanase)

In plants wilted by \textit{P. solanacearum} degradation of the vascular system occurs, indicating that cell wall-degrading enzymes may be involved in pathogenesis (Husain and Kelman 1958a; Kelman and Cowling 1965), Schell et al. (1988) purified a major endopolygalacturonase (52kDa) excreted by \textit{P. solanacearum} and cloned the gene encoding this enzyme \textit{pglA} from a genomic library. Then the \textit{pglA} gene was inactivated in vitro and used to mutate the chromosomal \textit{pglA} gene of \textit{P. solanacearum} by marker exchange. They found that the resulting mutant strain was deficient in production of the 52kDa polygalacturonase, and that the time required to wilt and kill tomato plants was doubled, indicating that the \textit{pglA} gene is important, but not absolutely necessary, for pathogenesis.

Similar results were obtained for the \textit{P. solanacearum} \textit{egl} gene encoding the 1,4-endoglucanase that cleaves soluble cellulose. Roberts et al. (1988) cloned the \textit{egl} gene of \textit{P. solanacearum} on a 2.7 kb \textit{XhoI-SalI} DNA fragment, which was mutagenised by Tn5 and used to mutate the chromosomal \textit{egl} gene of \textit{P. solanacearum} by site-directed mutagenesis. The mutant strain produced much less endoglucanase, but was still capable of killing tomato plants, albeit after a prolonged period of time.

Genes Controlling Pathogenicity and Hypersensitivity

In the molecular genetic studies of \textit{P. solanacearum} the most exciting advance has been in the cloning of genes controlling both pathogenicity (on tomato) and hypersensitivity (on tobacco) by Boucher et al. (1987). In an early study they isolated 12 prototrophic avirulent mutants out of 8250 clones tested after Tn5 mutagenesis (Boucher et al. 1985). Among these mutants nine were \textit{Hrp}− mutations of \textit{P. solanacearum}, the majority of which were mapped on a megaplasmid in a 25kb region cloned in plasmid pVir2. After localised mutagenesis two types of genes were found to be carried in this region: \textit{hrp} genes required for HR induction and located in the middle and left part of the 25kb insert of pVir2, genes which were also required for pathogenicity on tomato; and, \textit{dsp} genes located on the right end of the \textit{hrp} cluster which modulated aggressiveness on tomato.

Subsequently Boucher et al. (1988) tested 52 strains of \textit{P. solanacearum} representing different races, biovars and geographical origins, and found that all pathogenic strains carried DNA sequences homologous to \textit{hrp} genes present in pVir2, indicating that these \textit{hrp} genes are necessary for pathogenicity in all the strains.

When plasmid pVir2 was digested with restriction enzyme \textit{EcoR1}, six insert bands (8.1, 6.0, 4.0, 2.8, 1.7, 1.5 kb) were generated. \textit{EcoR1} bands of the same size were also identified in \textit{P. solanacearum} groundnut strain T2005 when probed with \textit{32P}-labelled pVir2. However, when these six \textit{EcoR1} fragments were individually \textit{32P}-labelled and separately hybridised with total DNAs of a number of \textit{P. solanacearum} strains, in one potato strain T2003, no homologous DNA to the 4.0 and 8.0 kb probes located in the left part of pVir2 was detected (Feng, unpublished data). This indicates that strain difference for \textit{hrp} genes may exist, or that \textit{hrp} genes in the middle part of pVir2 are more common in \textit{P. solanacearum}.

Functions encoded by the pathogenicity genes located in the pVir2 region are still unknown. It is interesting to note that there is a structural homology of the \textit{hrp} cluster of pVir2 with many pathovars of \textit{Xanthomonas campestris} (Boucher et al. 1987). In \textit{X. campestris pv. campestris} strain 8004 this homologous DNA fragment to pVir2 has been cloned (Daniels pers. comm.)

Recently, a second cluster of genes that specify pathogenicity has been identified (Huang et al. 1990). However, the DNA encoding these genes showed no homology with those in pVir2, indicating that a rather complex pattern exists in determining the pathogenicity of \textit{P. solanacearum}.

Genes Involved in Host Specificity

Many of the concepts concerning the genetics of plant-pathogen interactions arose from attempts to breed disease-resistant plants. One of the basic concepts is Flor's gene-for-gene hypothesis (Flor 1955) which is based on research on the interaction of \textit{flax} (\textit{Linum}
usitatissimum) and the rust fungus *Melampsora lini*. Flor postulated that for every gene in the pathogen determining virulence or avirulence there was a corresponding gene in the host determining resistance or susceptibility. It is believed that the avirulence genes interact with the resistance allele, then induce plant defence mechanisms. The search for *avr* genes in bacterial plant pathogens has been successful. Several *avr* genes were isolated from *P. syringae* pv. *glycinea*, *X. campestris* pv. *malvacearum* and *X.c. pv. vesicatoria* (Staskawicz et al. 1984, 1987; Gabriel et al. 1986; Swanson et al. 1988). Some avirulence genes have been completely sequenced (Napoli and Staskawicz 1987; Ronald and Staskawicz 1988; Tamaki et al. 1988). Surprisingly, no significant sequence homology at the nucleic acid or amino acid level was detected (Bonas et al. 1989). Although the identification of these genes is a great step forward in plant pathogen genetics, their functions and mode of interaction with plant genes are not clear.

In all cases where *avr* genes were isolated the race-cultivar interaction patterns were well established. In *P. solanacearum* the host range covered by a certain race may involve not one plant species, but many plant genera and families. Nevertheless attempts were made to search for the putative *avr* genes in *P. solanacearum*. Ma et al. (1988) chose two *P. solanacearum* strains, T2003 and T2005. T2003 is pathogenic to potato, but nonpathogenic to groundnut, and T2005 pathogenic to groundnut. Nearly 3000 clones of strain T2003 gene library were individually conjugated into the T2005 derivative recipient. No transconjugants were obtained which altered the pathogenic character of the T2005 recipient, indicating that the presumptive *avr* genes may not be present.

However, transferring clones from the T2005 gene library to T2003 recipient resulted in the identification of a cloned 12.8kb DNA which contained genes to extend the host range of *P. solanacearum* T2003 transconjugant to groundnut (Ma et al. 1988). This suggests that there are independent positive factors determining host range in *P. solanacearum* rather than an avirulence gene system. Evidence of such positive factors has also been obtained with *X.c. pv. translucens* (Mellano and Cooksey 1988).

A 12.8kb piece of DNA was cloned in plasmid pGX1252. No hybridisation was found between pGX1252 and pVir2, indicating that two different DNA sequences were involved.

In *Rhizobium* host-specific nodulation genes with a similar positive function have been characterised. These genes are not conserved, since alleles from different *Rhizobium* strains cannot substitute for each other on different host plants (Long 1989). It is not clear if genes contained in the 12.8kb DNA fragment have the same property as these host-specific nodulation genes. But it is interesting to find that this 12.8kb DNA sequence pattern appears to be present only in *P. solanacearum* strains which can cause wilt on groundnut, and not in strains which are not pathogenic on groundnut. This sequence is also not detected in many other strains of *Pseudomonas, Xanthomonas, Agrobacterium, Rhizobium, Erwinia* and *Corynebacterium* tested (Feng, unpublished data).

Concluding Remarks

There has been only a short period for phytopathologists to do genetic work or for geneticists to choose bacterial plant pathogens as research material. However the information obtained so far is rather impressive although some results are fragmentary and even contradictory. In general, *P. solanacearum* is amenable to genetic analyses. With the progress in recombinant DNA technology it is possible to identify individual genes, their products and the way they are regulated. More and more evidence shows that pathogenesis is a complex interaction of two partners, bacterial pathogen and host plant; there must be a considerable number of genes from both partners, which are directly involved in the disease process each of which has only a small influence. Undoubtedly new information about these identified genes will be coming out with the application of gene fusion, DNA sequencing and RFLP techniques. It may be helpful to put emphasis on the regulation of pathogenesis. In *Xanthomonas campestris* pv. *campestris*, genes involved in regulation of pathogenesis have been cloned (Tang 1989). Blocking of such regulatory genes resulted in the abolition of several cell wall degrading enzymes in the pathogen at the same time, and the pathogen was no longer pathogenic. It is conceivable that such regulatory genes may be more important in understanding the plant-pathogen interaction than previously realised.
Also the plant partner should be considered and studied when we are trying to explain the function of genes in plant pathogens.

Before there is a clear understanding and elucidation of the wilt process as a result of molecular genetic studies on *P. solanacearum* there may be practical applications. Boucher et al. (1988) used pVir2 as a molecular probe for hybridisation tests and demonstrated that a kind of restriction fragment length polymorphism did exist in *P. solanacearum* strains. Similar results were obtained for pGX1252, which also showed RFLP differences among *P. solanacearum* strains (Feng, unpublished data). This may be used for the classification of strains or for field identification.

It is known that non-pathogenic mutants are able to induce protection against the wild-type pathogenic strains (Trigalet and Demery 1986). Perhaps non-pathogenic deletion mutants are good candidates to carry on this work. Progress has been made in the construction of such mutants of groundnut and tobacco strains of *P. solanacearum* (Feng, pers. comm.).

References

Genetic and Breeding Aspects of Resistance to Bacterial Wilt in Groundnut

Liao Boshou, Wang Yuying, Xia Xingming, Tang Guiying, Tan Yujun, and Sun Darong*

Abstract

Although the genetic basis of resistance in groundnut to bacterial wilt (BW), and its underlying mechanism, are at present poorly understood, considerable progress has been made in China in the development of resistant germplasm. Extensive and intensive studies including disease surveys and screening for host plant resistance were initiated in the 1950s. Some desirable resistant germplasm lines including Xiekangqing were identified in 1974 and since then breeding for resistant cultivars has been successfully conducted at many research stations. In the past two decades several resistant cultivars with high yield traits have been released and these are playing an important role in controlling disease and increasing production in the affected areas. In China almost all of the groundnut lines identified as being resistant to BW were collected in the south where the disease is generally most serious. In general there is no obvious genetic linkage between resistance to BW and undesirable characters. Resistance to BW and rust (Puccinia arachidis) are independently inherited and some groundnut lines resistant to BW are also resistant to rust and Cercospora leaf spots. However, most BW resistant groundnut lines show poor resistance to drought while no groundnut cultivars with good tolerance to drought are found to be resistant to the disease. The directions which future research should take in order to improve yield potential, level of resistance and stability, food quality, and incorporation of resistance to other diseases, are indicated.

Bacterial wilt of groundnut (Arachis hypogaea) caused by Pseudomonas solanacearum is the most important bacterial disease of this crop throughout the world. This disease has been reported in many countries and regions among which central and south China, Indonesia and Uganda are most seriously diseased areas (Mehan et al. 1985; Liao Boshou et al. 1986). The disease is also believed to be a potential threat to groundnut production in several humid areas in the world (Mehan et al. 1985). In China, there are more than 200,000 ha of groundnut fields naturally infested with P. solanacearum where yield losses of 10-30% are commonplace. More serious damage, even to the extent of total loss of crop on heavily diseased fields, is often experienced when susceptible cultivars are grown. Extensive efforts for controlling groundnut bacterial wilt have established well that the most effective and practical way to control this disease is to breed and plant resistant cultivars. The first groundnut cultivar resistant to bacterial wilt, Schwarz 21, was released in Indonesia in the 1920s and its resistance is still useful. Some resistant cultivars were also released in the United States in the 1930s. In China, extensive and intensive studies including disease survey and screening for host plant resistance to groundnut bacterial wilt were initiated in the 1950s. Some desirable resistant germplasm lines including Xiekangqing were identified in 1974 and since then breeding for resistant cultivars has been successfully conducted at many research stations in the...
country (Sun Darong et al. 1978; Wang Yuying et al. 1989). In the past two decades much attention has been paid to breeding; several resistant groundnut cultivars with high yield have been released which are playing an important role in controlling disease and increasing production in the affected areas. Groundnut yield losses due to bacterial wilt in the major disease areas in China have so far been markedly reduced to less than 10% by planting resistant cultivars. Meanwhile, research progress has also been made on the pathological aspects of groundnut bacterial wilt, resistance screening and genetics of host plant resistance. This paper reviews the work done in China on the genetics and breeding for resistance to bacterial wilt in groundnut.

Genetics of Resistance to Bacterial Wilt in Groundnut

The inheritance of resistance in groundnut to bacterial wilt was not systematically studied until recent years. There has not yet been any authentic research on the mechanism of resistance in groundnut to bacterial wilt. The expression of the resistance is always influenced by the genetic background of the host plant, the population level and the pathogenicity of P. solanacearum, and environmental factors. Furthermore, the reaction of groundnut plants to P. solanacearum may be different at different growth stages, which might complicate research on mechanism and inheritance of the resistance. However, resistance may be mainly through resistance to disease development, even though there might be differences among groundnut cultivars in their ability to resist invasion by P. solanacearum. Not all the infected groundnut plants will display wilting symptoms, and hypersensitive partial wilting symptoms could be observed in resistant genotypes under relatively stable conditions (Liao Boshou et al. 1986).

Many studies on groundnut germplasm screening have confirmed the existence and genetic diversity of host plant resistance to bacterial wilt in cultivated groundnut (Jenkins et al. 1966; Sun Darong et al. 1981; Duan Laixiong et al. 1987; Wang Yuying et al. 1989). Genetic resistance to bacterial wilt has also been found in some accessions of wild Arachis species (Wang Yuying et al. 1989). With reference to China, almost all of the groundnut lines identified as being resistant to bacterial wilt were collected from south China where the disease is generally more serious (Sun Darong et al. 1981; Wang Yuying et al. 1989). In the laboratory, partial resistance has been induced in susceptible groundnut by exposure to an avirulent mutant strain of P. solanacearum (Kang Raowei 1986). These results might suggest a possible close relationship between the origin or evolution of resistance to bacterial wilt in groundnut and exposure to and selection by the disease pressure under natural conditions. However, in order to satisfactorily explain the origin and evolution of resistance, further studies are still needed on; first, the differences in disease reaction among different botanical accessions of Arachis hypogaea, and secondly, the disease or resistance status of the related wild Arachis species, and thirdly more detailed information on the influence of environmental factors on the disease development and on the expression of host resistance.

Experience in breeding has shown that the resistance of groundnut to bacterial wilt could be easily transferred from one genotype to another through hybridisation which suggests that the genetic background for the resistance is simple. From results obtained through breeding in a natural disease nursery, Wang Yuying et al. (1985) indicated that in most crosses the resistance level in F1 hybrids was lower than the average of their parents, which means that the resistance was controlled by recessive genes.

A complete diallel-cross design consisting of three resistant lines and one susceptible cultivar was conducted to explore the inheritance of resistance in groundnut to bacterial wilt (Liao Boshou et al. 1986). Artificial inoculation was conducted in the greenhouse to screen the resistance in F1, F2, BC1 hybrid progenies and their parents. A 1-5 point scale was used to estimate the relative differences among the infected plants with different partial symptoms. However, the results showed the resistance was partially dominant when the relative differences of partial resistance were involved in analysis, but in most crosses the dominance indexes were not high. No significant difference in resistance values between F1 hybrid and the average of its parents was observed.

Some other results from genetic studies also proved that the resistance of groundnut to bacterial wilt was just slightly dominant or recessive. The resistance levels of hybrid populations were largely related to the average
of their corresponding parents. Both general combining ability and special combining ability were important for the resistance, while the general combining ability was more important, which meant that the resistance was controlled mainly by additive genes. From the segregation in F2 and BC1, the resistance was thought to be controlled by three major genes located in the nucleus (Table 1). There might be other minor modifying genes relevant to the resistance (Liao Boshou et al. 1986).

Table 1: Proposed genotypes for resistance to bacterial wilt (P. solanacearum) in some groundnut lines

<table>
<thead>
<tr>
<th>Line</th>
<th>Resistance Reaction Value (%)</th>
<th>Type*</th>
<th>Proposed Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiekangqing</td>
<td>88.6 R</td>
<td>G1G2G3g3g3</td>
<td></td>
</tr>
<tr>
<td>Taishan Sanlirou</td>
<td>83.1 R</td>
<td>G1G2G3g3g3</td>
<td></td>
</tr>
<tr>
<td>Taishan Zhengzhu</td>
<td>73.7 MR</td>
<td>G1g2g3g3g3</td>
<td></td>
</tr>
<tr>
<td>Hong Hua 1</td>
<td>3.6 S</td>
<td>g1g2g2G3G3</td>
<td></td>
</tr>
</tbody>
</table>

* R = resistant, MR = moderately resistant and S = susceptible

Xiekangqing, Taishan Sanlirou and Taishan Zhengzhu might possess similar genetic backgrounds for their resistance to bacterial wilt. The general combining ability of Xiekangqing and Taishan Sanlirou were useful and several resistant cultivars have been released by using these two lines as resistance donors (Wang Yuying et al. 1989).

Generally there is no obvious close genetic linkage between resistance to bacterial wilt and other undesirable characters in groundnut cultivars or germplasm lines. The resistance to bacterial wilt and the resistance to rust (Puccinia arachidis) are independently inherited and some groundnut lines resistant to bacterial wilt are also resistant to rust and Cercospora leafspots (Wang Yuying et al. 1989). However, the response of most bacterial wilt-resistant groundnut lines to drought is relatively poor, while no groundnut cultivars with good tolerance to drought are found to be resistant to bacterial wilt, which could be related to the ability of the roots of groundnut plants to absorb moisture (Wang Yuying et al. 1989).

Although there have been some research results indicating considerable differences in pathogenicity among different strains of P. solanacearum affecting A. hypogaea (Li Wengong et al. 1987), there is no clear evidence of specialisation of pathogen strains to groundnut cultivars. There is a need to conduct more genetic research on resistance in groundnut to bacterial wilt in different genotypes, which could help to explore the origin of resistance and utilise the resistance resources more effectively.

Breeding Groundnut for Resistance to Bacterial Wilt

From 1974 to 1978, a nation wide screening of groundnut germplasm for resistance to bacterial wilt was carried out effectively through the collaboration of many research units in China and from that screening some useful resistant lines were identified (Sun Darong et al. 1981). After purifying these resistant lines, the Oil Crops Research Institute of CAAS initiated in 1975 a breeding program for resistance to bacterial wilt using the resistance sources identified and the natural disease nurseries established in Hong'An. Since 1975, more than 200 hybridisation crosses have been made and many breeding parents have been involved. Most of the trials to identify and select for both resistance and yield were conducted in the natural disease nurseries. Materials with high yield traits in advanced generations were also subjected to artificial inoculation. Up to now, some resistant lines with high yield and/or good food quality have been obtained, and two resistant cultivars, El Hua 5 and Zhong Hua 2 have been released to farmers.

El Hua 5 (78-1141) was selected from the progenies of Xiekangqing x Yueyou 589 made in 1975 using a modified pedigree method. This cultivar was released in 1985. It combines high resistance to bacterial wilt with high yield. Its resistance was shown to be quite stable probably because both of its parents were resistant. El Hua 5 was shown in several different places to outyield by 10-30% Taishan Sanlirou, the cultivar which was once planted in diseased areas. El Hua 5 now covers most of the bacterial wilt affected areas in central China along the Yangtze River Valley.

Zhong Hua 2 (85-007) was selected from the progenies of El Hua 4 x Taishan Sanlirou made in 1979. It was also bred through a modified pedigree method and was released in 1988. In the multilocational trials, this cultivar was shown to be as highly resistant to bacterial wilt as Xiekangqing and El Hua 5. It could outyield El Hua 5 and Xiekangqing by 20% and 50% respectively. The seed protein content of Zhong Hua 2 is up to 30% and, like El Hua 4, it is an early maturing cultivar with wide adaptation.
Since 1980 some new groundnut cultivars resistant to bacterial wilt have also been released and extensively cultivated in Guangdong, Guangxi, Fujian, and Shandong provinces, such as Yueyou 92, Guiyou 28, Jinyou 3121, and Lu Hua 3. The resistance performance of some newly-released groundnut cultivars in Hubei Province is shown in Table 2.

In breeding for resistance to bacterial wilt, some parents resistant to rust have been used and some breeding materials with resistance to both diseases have been obtained, but their yield characters need to be improved. However, most of the rust-resistant groundnut accessions are of Valencia type from Peru, and their resistance to rust shows close linkage with some undesirable pod and/or seed characters and poor yield. Overcoming this undesirable genetic linkage is the key to breeding for multiple resistances in the future. In breeding for resistance to bacterial wilt many resistant lines with high protein content (above 28%) have been obtained.

Table 2: Resistance (%) of some groundnut cultivars (1989)

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Natural disease nursery (Hong’An, Hubei)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yueyou 92</td>
<td>85.5</td>
<td>80.2</td>
<td>87.5</td>
<td>77.9</td>
<td>82.8</td>
<td></td>
</tr>
<tr>
<td>Guiyou 28</td>
<td>74.7</td>
<td>81.7</td>
<td>75.8</td>
<td>74.1</td>
<td>76.6</td>
<td></td>
</tr>
<tr>
<td>84-2117</td>
<td>83.8</td>
<td>83.5</td>
<td>81.8</td>
<td>62.1</td>
<td>77.8</td>
<td></td>
</tr>
<tr>
<td>El Hua 5</td>
<td>95.0</td>
<td>93.5</td>
<td>96.7</td>
<td>96.2</td>
<td>95.4</td>
<td></td>
</tr>
<tr>
<td>Zhong Hua</td>
<td>88.1</td>
<td>95.9</td>
<td>85.8</td>
<td>96.3</td>
<td>89.9</td>
<td></td>
</tr>
<tr>
<td>Schwarz 21</td>
<td>82.2</td>
<td>88.3</td>
<td>87.2</td>
<td>89.3</td>
<td>86.7</td>
<td></td>
</tr>
<tr>
<td>Hong Hua 1</td>
<td>5.0</td>
<td>2.5</td>
<td>3.7</td>
<td>4.0</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

Artificial inoculation (Wuhan, Hubei)

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Artificial inoculation (Wuhan, Hubei)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yueyou 92</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Guiyou 28</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>84-2117</td>
<td>66.1</td>
<td>72.7</td>
<td>64.0</td>
<td>65.0</td>
<td>66.7</td>
<td></td>
</tr>
<tr>
<td>El Hua 5</td>
<td>81.5</td>
<td>82.2</td>
<td>90.0</td>
<td>83.3</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>Zhong Hua 2</td>
<td>84.0</td>
<td>80.0</td>
<td>88.2</td>
<td>84.4</td>
<td>84.2</td>
<td></td>
</tr>
<tr>
<td>Schwarz 21</td>
<td>79.2</td>
<td>78.8</td>
<td>89.4</td>
<td>83.3</td>
<td>82.7</td>
<td></td>
</tr>
<tr>
<td>Hong Hua 1</td>
<td>0.0</td>
<td>0.0</td>
<td>3.2</td>
<td>0.0</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

It is necessary to use highly resistant materials as crossing parents in order to obtain good resistant lines in hybrid progenies because the resistance is controlled by additive genes. However, multi-directional crossing is also an effective method in terms of utilising germplasm materials with only medium-level resistance to bacterial wilt but with more desirable agronomic traits. In breeding, yield selection and identification could be done from F4, where the resistance level of selected families could be quite stable.

Generally, the yield potentials of most released groundnut cultivars resistant to bacterial wilt are relatively lower than those of the susceptible cultivars, and most bacterial wilt-resistant cultivars are also generally sensitive to water deficiency, which might be due to the narrow genetic background of the resistance donors used. More recently, some 40 groundnut lines of hirsuta identified as resistant to bacterial wilt have been collected from south China (Duan Lai Xiong et al. 1987). With these materials, the drought tolerance and poor seed dormancy of the present bacterial wilt-resistant groundnut cultivars might be improved.

Future Research Priorities

Notable progress has been made in breeding groundnut for resistance to bacterial wilt and the disease has been substantially controlled by planting resistant cultivars in China. However, in order to improve the yield potential, resistance level and stability, food quality and other disease resistances of the released bacterial wilt-resistant groundnut cultivars, further research efforts are needed on many aspects. There needs to be a more detailed study of the disease status of groundnut bacterial wilt and variation in the P. solanacearum strains affecting groundnut throughout the country. Further, more extensive screening of germplasm for resistance to bacterial wilt, including determination of the disease reaction of all the wild Arachis species to find better resistant germplasm resources with a higher level of resistance, or with better agronomic traits, or with desirable resistance to other production constraints, should be carried out. There is a need for genetic evaluation of bacterial wilt-resistant germplasm accessions for differences in genetic background of resistance, genetic relationship of bacterial wilt-resistance with other disease resistances, drought tolerance and other agronomic traits. The mechanism and components of resistance in groundnut to bacterial wilt need further research to improve techniques for disease rating and resistance identification. These initiatives will lead to better control strategies and the development of groundnut cultivars with enhanced resistance.
References

General Aspects of Groundnut Bacterial Wilt in China

Tan Yujun and Liao Boshou*

Abstract
Although bacterial wilt of groundnut is known to affect more than 200,000 hectares of land in parts of southern, central, and northern China, there is a need for a more systematic and detailed disease survey to determine disease distribution and to make loss assessment. There is some evidence that strains of *P. solanacearum* affecting groundnut differ in their pathogenicity for the same groundnut cultivar in different parts of China. In general, strains from the north of China were less virulent to groundnut than those from the south. It appears that the strains of *P. solanacearum* affecting groundnut are quite complex, and further research efforts, including the use of molecular and serological techniques, are needed to understand strain variation. The infection process and disease severity are particularly influenced by high soil and air temperatures and by rainfall, as well as by soil type, populations of *P. solanacearum* in the soil and host plant resistance. It has been well established that rotation with paddy rice can significantly reduce pathogen populations in soil and effectively decrease bacterial wilt incidence. Flooding of soil for 30 days prior to planting can also markedly reduce disease incidence. Progress in control of groundnut bacterial wilt depends on a better understanding both of the disease and of host plant resistance, including the mechanism of resistance and its functional components. The search for new sources of resistant groundnut germplasm and its evaluation on an international basis should continue.

Groundnut (*Arachis hypogaea*) is an important oil crop and also an important cash crop widely cultivated in China. In recent years the annual sowing area for groundnut has been about three million hectares. Of this, more than 90% is concentrated in the main production areas including northern, central, and southern zones. Although the agroclimatic conditions vary considerably in the different zones, the warm weather and plentiful rainfall during the period of maximum plant growth in most groundnut production zones favour the development of bacterial wilt on this crop. In some places continuous cropping of groundnut on diseased fields has also increased disease incidence. In China identification and survey for groundnut bacterial wilt was initiated in the 1950s while more intensive research on control methods has been carried out since 1970. In the past twenty years much work has been done on the pathogen, epidemiology and comprehensive control measures for groundnut bacterial wilt. This paper briefly reviews the research work done in China on groundnut bacterial wilt.

Distribution and Importance
Bacterial wilt of groundnut caused by *Pseudomonas solanacearum* is widely distributed in Guangdong, Guangxi, Hainan, Fujian, Jiangxi, Hubei, Hunan, Anhui, Jiangsu, Sichuan, Shandong, Henan, Hebei, and Liaoning provinces (Fan Huaizhong et al. 1960; IPP of GAAS 1976; Luo Daxin 1956; Mehan et al. 1986; Meng Xianchen 1957, 1964; Anon. 1979) and this disease is especially serious in the southern part of the country. There are more than 200,000ha of groundnut fields naturally infested with *P. solanacearum* in China; however, more survey work is still needed to obtain more information about disease distribution and severity. In China losses from groundnut bacterial wilt of 10-30% in moderately affected fields and of more

* Oil Crops Research Institute of CAAS, Wuhan, Hubei, 430062, Peoples’ Republic of China
than 50% in heavily infested fields are often experienced. The annual yield losses of groundnut (pods) due to bacterial wilt are estimated to be 45-65 thousand tonnes.

Strains of *P. solanacearum* Affecting Groundnut

Cheng et al. (1981) reported that *P. solanacearum* isolates from diseased groundnut plants were highly virulent to tomato, eggplant, bean and chilli but such isolates could not cause wilting of sesame, sunflower, castor or soybean. These isolates could also infect *Nicotiana glutinosa* but were avirulent on *Nicotinia tabacum*. The strains isolated from groundnut may be different in pathogenicity from those isolated from *N. tabacum* (Cheng et al. 1981; Ren Xinzhen et al. 1981).

Hu Baoyu et al. (1981) reported that a groundnut cultivar may show differences in its reaction to bacterial wilt in different geographical locations. For instance, the incidence (%) plants killed of Shuikou Yazi was 61.7% in Rongchen, Shandong; but in Lunan and Wendeng in the same province, the incidence was just 0.5-6.5% (Hou Xuyou et al. 1980). The pathogenicity to groundnut of *P. solanacearum* strains from different places may differ (Xu Zeyong et al. 1980).

Li Wenrong and Duan Laixiong (1987) confirmed that *P. solanacearum* strains affecting groundnut from different regions differ in their pathogenicity even to the same cultivar. In general, the strains from the north of China were less virulent to groundnut than those from the south. A groundnut cultivar may be resistant when planted in diseased fields in northern China but be highly susceptible to the disease when it was planted in southern China. Thirty-six strains collected from various parts of China were inoculated into six groundnut cultivars, with different resistance levels previously identified in Hubei, and used as indicator cultivars to investigate the pathogenicity differences among isolates of the pathogen affecting groundnut. The results suggested that these 36 strains could be divided into five pathogenicity groups among which groups II and IV were prevalent in China (Li Wenrong and Duan Laixiong 1987).

Hayward (1964) divided *P. solanacearum* into four biovars based on various physiological characters. Hua Jinyue et al. (1984) reported that *P. solanacearum* isolates affecting groundnut belonged to biovars 3 and 4. They studied seventeen isolates among which six were of biovar 3 and eleven were of biovar 4. Of ten isolates collected in Guangxi, six were of biovar 3 and four were of biovar 4. The isolates collected from Hubei were all of biovar 4 (Liao Bihui et al. 1984).

The strains of *P. solanacearum* affecting groundnut in China are quite complex, and further research efforts including the use of serological and molecular techniques are needed to understand them better.

Life Cycle and Modes of Dispersal

P. solanacearum overwinters in soil, and infested soil is the most important primary inoculum source. However, crop residues and organic manure infested with the pathogen may also serve as primary inoculum. The pathogen is mainly disseminated through infested soil and water. Farm implements and machinery, cultural practices and even animals and insects can also aid the dissemination of the pathogen. Dissemination of the pathogen through seed appears to be less likely (IPP of GAAS 1976; Li Wenrong et al. 1981) because *P. solanacearum* is highly sensitive to desiccation.

The pathogen invades the groundnut plant through wounds or natural openings in roots. Infected plants express wilting symptoms when the environmental conditions are favourable. After the infected plants have wilted, the bacteria are returned to the soil and can infect adjacent plants. Groundnut plants artificially inoculated by soaking seeds before planting in a suspension of the pathogen show rapid onset of wilt and bacteria from the diseased plants could kill uninfected plants nearby within the same growth period. The pathogen can move as much as one metre through soil without the aid of water movement in one growth period.

Epidemiology

The establishment, development and disease severity of groundnut bacterial wilt are generally influenced by the climatic factors, especially temperature and rainfall, soil type, pathogen population in soil, and host plant resistance.

When the daily air temperature is over 20°C and the soil temperature in the top 5 cm layer is over 25°C for one week, symptoms of wilt in infested fields will occur. When the air temperature is over 25°C and soil temperature over 30°C, the infection of the pathogen and wilt symptoms will reach their peak. In China the peak disease period for bacterial wilt of
groundnut is late June to late July in the north and in June in central China. In the south the peak disease period is May and June for spring-sown groundnut and in late September to late October for the autumn-sown crop.

Rainy days and rainfall can influence the severity of groundnut bacterial wilt. If soil and air temperatures are optimal for disease development, heavy rainfall after drought, or sudden hot weather after heavy rain, or short intervals between fine and rainy days, will favour the disease and result in serious wilting. By contrast if rainfall is prolonged disease development could be slow.

The incidence of groundnut bacterial wilt is also related to soil type. In general, the disease is less prevalent in soils with a high organic matter content and more prevalent in soils of low fertility and with poor water retention capacity. The disease incidence is positively related to the ratio of sandy particles in soil. Hou Xuyou et al. (1980) reported that there was a significant negative correlation between disease incidence and soil bulk density while the correlation between disease incidence and non-capillary porosity and percentage of air in soil was positive.

The population of *P. solanacearum* in soil influences bacterial wilt disease severity. In experiments in sterilised soils it was shown that different densities of inoculum suspension of *P. solanacearum* resulted in different disease incidence. When the concentration of inoculum was 10^6 cfu mL$^{-1}$, the disease incidence was 10%; when 6×10^6 cfu mL$^{-1}$ and 1.5×10^8 cfu mL$^{-1}$ were used, the disease incidence was 21.4% and over 50%, respectively (Li Wenrong et al. 1981).

Control

Genetic manipulation of host plant resistance

It has been well established that the use of resistant groundnut cultivars is the most effective and practical way to control bacterial wilt. Preliminary screening of groundnut germplasm for resistance to bacterial wilt was conducted in the 1950's in China. From 1960 to 1964 some 500 groundnut lines were evaluated for their reaction to bacterial wilt in Guangdong, from which some 30 lines with resistance including Taishan Zhengzhu, Suixi Dali, Shuikou Yazi, Shenghai Badou and runner Tientsin were found (IPP of GAAS 1976). Since 1972 more extensive screening for resistance to bacterial wilt through nation-wide cooperation has been successfully conducted in China, and several more desirable resistant groundnut lines including Xiekangqing, Taishan Sanlirou, Lukangqing 1, Yueyou 589, Huangchuan Zhili, and some lines in *A. hypogaea* var. *hirsuta*, have been identified. With the help of these resistant germplasm materials, some new groundnut cultivars with good resistance to bacterial wilt and high yield characters have been released in recent years and they are making an important contribution to production. The genetics of host plant resistance has also been studied (Liao Boshou et al. 1986; Wang Yuying et al. 1985). Further research is under way to combine resistance to bacterial wilt with resistances to other groundnut diseases (Li Wenrong and Tan Yujun 1983).

Crop rotation

It has been well established that rotation of groundnut with paddy rice can significantly reduce the pathogen population in soil which in turn can effectively decrease bacterial wilt incidence. In Dianbai County of Guangdong Province the bacterial wilt incidence on groundnut was reduced from 50-70% to 5% through a single rotation of groundnut with rice. If practicable flooding of diseased fields for 30 days before sowing groundnut could also reduce bacterial wilt incidence markedly (Li Wenrong et al. 1981; Li Wenrong and Tan Yujun 1984). In uplands, rotation of groundnut with other non-host crops such as sugarcane, maize, sorghum, and wheat for 2-5 years substantially reduces groundnut bacterial wilt.

Field management

Greater application of organic fertilizer, improvement of groundnut growth, crop sanitation and removal of susceptible weed hosts in fields all help in the control of groundnut bacterial wilt.

Chemical Control

Since the early 1950s experiments on the use of chemicals in control of groundnut bacterial wilt have been carried out in Guangdong, Guangxi and Hubei Provinces, but no chemical was found to be effective. During 1973-1975, nine bacteriocides were tested. Of these, only 2-amino-1,3,4-thiadiazole (C$_2$H$_4$N$_3$S$_2$) could reduce bacterial wilt disease incidence by 50% (Anon 1974), but its use was prohibited because of toxicity to human beings.
Future Research Priorities

In order to control groundnut bacterial wilt more effectively and breed better resistant cultivars, a better understanding of both the disease and the host plant resistance is needed. A more detailed knowledge of the distribution of groundnut bacterial wilt in China should be based on a more comprehensive disease survey. Further research efforts are also needed on the characteristics of *P. solanacearum* strains affecting groundnut and their differences in pathogenicity, and the influence of the pathogen on the origin and evolution of host plant resistance. It is necessary to make some preparation for those areas where groundnut bacterial wilt is not an important problem today but might become important in the future.

With regard to host resistance, it is necessary to screen better resistant groundnut germplasm materials, and this should be conducted on an international basis. More genetic evaluation for bacterial wilt-resistance in groundnut is needed in order to devise better strategies for the use of resistance sources in breeding. The mechanism and components of the resistance should be studied for they might be important in many ways. These goals and objectives will surely result in better control measures in the future.

Acknowledgments

The authors are grateful to Drs. Sun Darong and Xu Zeyong for their helpful advice.

References

Li Wenrong and Duan Laixiong 1987. Study on *P. solanacearum* strains for their pathogenicity to groundnut. Peanut Science and Technology, 4, 1-4.

Meng Xianchen 1957 Survey for groundnut diseases in Hong'an County. Acta of Huazhong Agricultural College, 2, 105-112.

A Review of Bacterial Wilt on Groundnut in Guangdong Province, Peoples' Republic of China

Yeh Wei-Lin*

Abstract

Bacterial wilt of groundnut caused by *Pseudomonas solanacearum* is severe and widespread in Guangdong, and yield losses ranging from 15-20% are common in diseased fields. In general, rotation of groundnut with rice in lowland areas or in upland areas equipped with an irrigation system, or rotation with a non-host coupled with the use of resistant groundnut cultivars and the use of herbicides in irrigated areas, are important and effective means of reducing disease incidence in infested soils. Although the epidemiology of the disease in Guangdong is similar to that in other tropical countries, the climate and cropping systems are more complex. In recent years, plant breeders have produced some new high yielding and good quality lines and cultivars with high resistance to bacterial wilt and other diseases. The parents of these new lines and cultivars were obtained from exotic sources with high level resistance to wilt and other diseases. It seems that some exotic sources of wilt resistance, especially wild *Arachis* species, provide a useful gene pool for combining with resistance genes to foliar diseases in Guangdong.

GUANGDONG province in the southern part of China is a principal groundnut production area located in the subtropics, with warm temperatures and high precipitation during the period of vegetative plant growth. Bacterial wilt caused by *P. solanacearum* is one of the important diseases of groundnut. It is widespread and severe throughout the province. Yield losses in fields affected by the disease are commonly in the range of 15 to 25%. The disease is more severe in irrigated uplands, low tablelands and on the sandy river banks upstream, than on plains or river delta regions in all districts. In general, diseased fields are widespread in the main groundnut producing areas of Zhangjiang, and Jiangmen districts and to a lesser extent in Shaoguang, Zhaoging, Foshan, Huizhou and Shantou.

Epidemiology

Field observations and the experience of farmers have shown that soil type and fertilizer use have a profound affect on disease incidence. The disease is clearly more severe in poor quality sandy soils or in fine sand than in sticky clay or sandy loam soils, and lesser in extent on fertile loam or alluvial loam soils. Poor quality soils continuously fertilized with organic manure have a lower incidence of wilt than those receiving chemical fertilizers. In general, a soil pH of 5.0 to 6.8 is favourable for the pathogen. Some preliminary observations suggest that alkaline soils may be suppressive. A purple soil with a pH ranging from 8 to more than 9, widely distributed in the north of Nanxiong county and in Scian county, is continuously cropped with groundnut and tobacco, another host of bacterial wilt, and yet the incidence of wilt is low and usually less than 3%. Tobacco isolates were shown in cross inoculation experiments to be capable of producing a wilt in groundnut. In tests on potted plants with soil pH adjusted to 8.2 and 9.0, the incidence of bacterial wilt was 5 and 0% respectively.
Field observations suggest that flood irrigation, or cultivation of rice paddy for one or two seasons followed by groundnut, is effective in reducing wilt to less than 3 and 1%, respectively. However, the wilt incidence could be as high as 15-20% in fields which are irrigated during the period of vegetative plant growth, or under rainy conditions even where groundnut is rotated with non-hosts for 2-3 years. Soils of low moisture content tend to give a somewhat lower incidence of wilt. Similarly, wilt incidence is higher in spring crops than in the autumn crop, probably because there is less rain at that time and soil moisture is also reduced by drying winds. Inoculation experiments in the field tend to confirm this observation on the effect of soil moisture. The disease was readily reproduced in soils with moisture content of 60% of waterholding capacity, whereas inoculations sometimes failed in soils of low moisture content. These observations show clearly that flood irrigation and related cultural practices can greatly reduce disease incidence through reduction in soil populations of the pathogen, whereas, by contrast, high soil moisture content contributes to disease dispersal and multiplication, and disease tends to be limited by soils of low moisture content.

What is the role of alternate hosts and of non-hosts in disease epidemiology? The main alternate hosts to groundnut in Guangdong are tomato, eggplant, pepper, potato, tobacco and a medicinal crop, *Agastache rugosa*. *Casuarina equisetifolia* has been shown to be susceptible to local isolates by branch puncture inoculation and by soaking seedlings in a bacterial suspension. The most important alternate weed host is *Ageratum conyzoides* which occasionally shows symptoms of wilt in groundnut fields, is widely distributed even in poor quality acidic soils in waste land, and can survive and overwinter in wet lands. Isolates from weeds in groundnut fields were shown to produce symptoms on inoculation to groundnut, tomato and potato, but not tobacco. However, a tobacco isolate from Nanning county was shown to infect groundnut. The most important non-host crops in groundnut cultivation areas are rice, corn, wheat, sorghum, sugarcane, sweet potato, soybean, black bean, mung bean and *Phaseolus angularis*. Rice is a more important non-host for use in crop rotations than dryland crops.

In recent years the wilt resistant cultivars Yie-you 92 and Yie-you 256 have been planted in diseased fields, resulting in a reduction in disease incidence from 45-60% to less than 8%. Even greater control may be anticipated if non-host crops are used in rotation with resistant cultivars.

Seed transmission is another possible factor in disease epidemiology. However, during 1959-1961 many thousands of seeds from wilted plants were sown in sterilised soil, without any showing symptoms of wilt. These observations provide no evidence in support of the occurrence of seed transmission. Freshly voided manure from oxen fed on diseased plants used as a fertilizer apparently can serve as a source of infection. Underground insects and nematodes cause root injury and may contribute to disease dispersal.

Sources of Resistance and Breeding of Resistant Cultivars

For the purpose of obtaining isolates of high and stable virulence for use in resistance screening, 14 selected isolates from different locations in Guangdong and three from other provinces, were tested on 12 groundnut cultivars in order to demonstrate differences in pathogenicity. The results clearly identified three isolates, of which two were from Guangdong and one from Shandong, with high and stable virulence. However, the race and biovar of these isolates was not determined.

The first screening of wilt resistant groundnuts was made in the 1950s with continuation in the early 1970s. The results showed that among the wilt resistant plants 25 were of the runner type, four were of Spanish type and one was of Virginia type. Runner types are more disease resistant than other types, which has been confirmed by field observations.

Screening for resistance to systemic wilt and major foliar disease pathogens was begun in 1978 with the introduction of numerous exotic germplasm sources from ICRISAT and the USDA, most of which originated in Latin America. Testing for resistance to foliar diseases was either carried out in the field under natural disease pressure, or in the glasshouse, and screening for resistance to bacterial wilt in the field by stem puncture inoculation, or in the glasshouse by immersion of seed in a bacterial suspension or transplantation of seedlings into infested soil. The results of the screening of selected cultivars and species for resistance to bacterial wilt and foliar diseases may be summarised as follows. Screening of selected lines from exotic interspecific hybrids showed
Table 1. Reaction of some groundnut genotypes to wilt and foliar diseases in Guangdong.

<table>
<thead>
<tr>
<th>Identity</th>
<th>Wilt Incidence</th>
<th>B.W.*</th>
<th>Disease Reaction</th>
<th>Botanical Type</th>
<th>Country of Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCAC 17127</td>
<td>5.0</td>
<td>R</td>
<td>MR</td>
<td>Valencia</td>
<td>Peru</td>
</tr>
<tr>
<td>PI 393531</td>
<td>1.3</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 393641</td>
<td>7.6</td>
<td>R</td>
<td>MR</td>
<td></td>
<td>Peru</td>
</tr>
<tr>
<td>NCAC 17124</td>
<td>7.3</td>
<td>R</td>
<td>MR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICG 1073</td>
<td>0</td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCG 5346</td>
<td>3.7</td>
<td>R</td>
<td>MR</td>
<td>Valencia</td>
<td>Peru</td>
</tr>
<tr>
<td>NCAC 17129</td>
<td>3.0</td>
<td>R</td>
<td>MR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 414332</td>
<td>11.4</td>
<td>R</td>
<td>MR</td>
<td>Virginia</td>
<td>Honduras</td>
</tr>
<tr>
<td>PI 393528-B</td>
<td>1.4</td>
<td>R</td>
<td>S</td>
<td></td>
<td>Peru</td>
</tr>
<tr>
<td>NCAC 17142</td>
<td>21.4</td>
<td>MR</td>
<td>R</td>
<td></td>
<td>Peru</td>
</tr>
<tr>
<td>PI 390595</td>
<td>32.9</td>
<td>MR</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI 407454</td>
<td>32.9</td>
<td>MR</td>
<td>S</td>
<td></td>
<td>Ecuador</td>
</tr>
<tr>
<td>RMP-91**</td>
<td>85.7</td>
<td>S</td>
<td>S</td>
<td>Virginia</td>
<td>Upper Volta</td>
</tr>
<tr>
<td>RMP-12**</td>
<td>66.7</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robust 33-1</td>
<td>93.8</td>
<td>S</td>
<td>S</td>
<td></td>
<td>Ghana</td>
</tr>
<tr>
<td>Schwarz 21</td>
<td>3.6</td>
<td>S</td>
<td>S</td>
<td>Spanish</td>
<td>Indonesia</td>
</tr>
<tr>
<td>7343***</td>
<td>1.2</td>
<td>S</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8632***</td>
<td>6.7</td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8647***</td>
<td>2.5</td>
<td>R</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gajah</td>
<td>21.5</td>
<td>MR</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macan</td>
<td>27.7</td>
<td>MR</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidang</td>
<td>28.0</td>
<td>MR</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentang</td>
<td>39.8</td>
<td>MR</td>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*B.W. = bacterial wilt, LLS = late leaf spot, ** Schwarz 21 derivative, *** Rosette resistant

that CS 30 and CS 7 possessed both bacterial wilt resistance and either resistance or moderate resistance to foliar diseases. Furthermore, screening of cultivated species showed that germplasm with these levels of resistance generally originated in Latin America (Table 1). Germplasm originating in Indonesia with resistance or moderate resistance to bacterial wilt was susceptible to rust and late leaf spot. It was also of interest that germplasm incorporating resistance to Witches Broom and rosette virus, and some sources with resistance to Aspergillus flavus were susceptible to bacterial wilt.

In addition, some species of four sections representing some wild Arachis species were screened in the glasshouse for resistance to bacterial wilt and foliar diseases. The results showed that representative entries in all sections possessed immunity to rust and high levels of resistance to bacterial wilt and leaf spots. It is of interest that monticola species of series Amphiploides in the Arachis section was identified as wilt and foliar disease susceptible, whereas stenosperma species of the Perennue series of the Arachis section combined high wilt and foliar disease resistance with high protein content in each of the three accessions examined. It was concluded that wild Arachis species are potential sources of high level resistance to both bacterial wilt and foliar diseases. They greatly enhance the available gene pool in groundnut for purposes of breeding resistant cultivars (Table 2).

In order to solve the problem of bacterial wilt disease and foliar diseases on irrigated land, the first attempts at breeding wilt resistant cultivars were made in the late 1960's. Two moderately resistant cultivars, Vie-you 589 and Sui-tien were identified in the early 1970's. Later an exotic source of wilt resistance was crossed with a local cultivar, and as a result two more resistant cultivars, Vie-you 92 and Yieyou 256, were released. More recently Vie-you 92 was included in quantitative tests at different localities in diseased fields in southern China. The results show conclusively that Vie-you 92 maintains its resistance to bacterial wilt with greater pod yield, and that this cultivar is suitable for cultivation in diseased fields. At the same time an exotic runner type was crossed with a local cultivar, and a cultivar combining bacterial wilt resistance with moderate resist-
Table 2. Reaction of wild Arachis species to four groundnut diseases in Guangdong

<table>
<thead>
<tr>
<th>Section</th>
<th>Species</th>
<th>ICG/PI No.</th>
<th>Disease Reaction</th>
<th>ELS*</th>
<th>LLS*</th>
<th>B.W.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis</td>
<td>batizocoi</td>
<td>8124</td>
<td>HR/I</td>
<td>HR</td>
<td>HR</td>
<td>R/MS</td>
</tr>
<tr>
<td></td>
<td>duranensis</td>
<td>8123</td>
<td>HR</td>
<td>HR</td>
<td>N**</td>
<td>N**</td>
</tr>
<tr>
<td></td>
<td>spagazzinii</td>
<td>8139(LL)</td>
<td>HR</td>
<td>R</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>correntina</td>
<td></td>
<td>I</td>
<td>R</td>
<td>HR</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>stenosperma</td>
<td>8126</td>
<td>HR</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8137</td>
<td>HR</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8125</td>
<td>HR</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>cardenasii</td>
<td>8216</td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>chacoense</td>
<td>4983</td>
<td>I</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>villosa-1</td>
<td>PI 210555</td>
<td>I</td>
<td>R</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>villosa-2</td>
<td>PI 210555</td>
<td>I</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>monticola</td>
<td>8135</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8198</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Erectoides</td>
<td>appressipila</td>
<td>8129</td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>rigonii</td>
<td>8186</td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Arachis sp.</td>
<td>8128</td>
<td>I</td>
<td>HR</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Triseminalae</td>
<td>pusilla</td>
<td>8131</td>
<td>I</td>
<td>R</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI 298628</td>
<td>I</td>
<td>HR</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PI 331189</td>
<td>I</td>
<td>HR</td>
<td>R</td>
<td>HR</td>
</tr>
<tr>
<td>Rhizomatosae</td>
<td>glabrata</td>
<td>8173</td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8925</td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Arachis sp.</td>
<td>8160</td>
<td>I</td>
<td>HR</td>
<td>R</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>HLKHe565-60</td>
<td></td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Arachis sp.</td>
<td>PI 338297</td>
<td>I</td>
<td>HR</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

* ELS = early leaf spot, LLS = late leaf spot, B.W. = Bacterial wilt, ** N = No sporulation or no symptom

ance to rust was released. However, quantitative tests showed that this cultivar was unstable in yield in different seasons and also showed undesirable runner traits. This problem was overcome by back crossing, and a new cultivar combining bacterial wilt resistance with high yield has been obtained and is being evaluated in different localities, with encouraging results in preliminary tests.

Progress in improving the range of sources of bacterial wilt resistance has been good, but success has been only partial in combining this resistance with resistance to rust, partly because of the low yield character of the exotic parents providing rust resistance. Nevertheless two institutions in Guangdong have released three high yielding cultivars with rust resistance derived from exotic parents by the composite cross method. The rust reaction was identified as moderate resistance. Preliminary test results have been encouraging.
Present Status of Groundnut Bacterial Wilt Research in Sri Lanka

K.W. Jayasena* and R.H.S. Rajapaksa**

Abstract

A severe wilt disease of groundnut (cv. Red Spanish) in fields at the Regional Agricultural Research Station, Angunakolapelessa, Sri Lanka, was shown to be caused by Pseudomonas solanacearum biovar 3. Most of the groundnut lines/cultivars tested from ICRISAT were resistant to bacterial wilt.

GROUNDNUT (Arachis hypogaea) is mainly grown in the dry zone of Sri Lanka with an annual rainfall of 1250 mm to 1875 mm and is used for local consumption (confectionary). At present 8 000 ha are being cultivated. In the 1985/86 Maha season (September to February), we observed a few groundnut (cv. Red Spanish) plants wilted (incidence less than 2%) in fields at the Regional Agricultural Research Station, Angunakolapelessa. In the subsequent Maha season (1986/87), the incidence was 40-45% in the same field. This unusually high occurrence lead us to examine the wilted plants, to identify the causal pathogen and determine the varietal susceptibility.

Disease Symptoms

The leaves become flaccid, followed by drooping and wilting; finally the plants die off. Thin sections taken through infected stems and roots show brown discolouration in the vascular system.

<table>
<thead>
<tr>
<th>Host</th>
<th>Reaction (Symptoms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundnut cv Red Spanish</td>
<td>+</td>
</tr>
<tr>
<td>Tomato cv 'Local'</td>
<td>+</td>
</tr>
<tr>
<td>Tobacco cv White Burley</td>
<td>+</td>
</tr>
<tr>
<td>Egg plant cv Jaffna Purple</td>
<td>+</td>
</tr>
<tr>
<td>Pepper MI-2</td>
<td>+</td>
</tr>
<tr>
<td>Control (distilled water)</td>
<td>-</td>
</tr>
</tbody>
</table>

Wilting of plants (observed) 4-6 days after inoculation.

Identification of the Causal Agent

Isolation from the infected roots and stems consistently produced cream coloured rounded colonies on sucrose peptone agar (SPA) (Table 1). Isolates from groundnut were able to produce acid from lactose, maltose, cellobiose, mannitol, sorbitol and dulcitol; after four days at 30°C nitrite and gas were produced from nitrate. Pathogenicity test was performed by stem pin prick inoculation of three-week-old seedlings using a 48 h culture of the bacterium grown on SPA medium. The wilt symptoms were observed 4-6 days after inoculation on groundnut and 14-21 days after inoculation on pepper, tobacco, tomato and egg plants (Table 2). These tests indicate that the causal organism of

Table 1: Bacterial colony appearance on different artificial media (after 48 h. at 30°C)

<table>
<thead>
<tr>
<th>Medium</th>
<th>Cultural Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triphenyl tetrazolium chloride (TZC)*</td>
<td>Fluidal white colonies with light pink center</td>
</tr>
<tr>
<td>Sucrose Peptone Agar (SPA)**</td>
<td>Cream coloured round colonies</td>
</tr>
<tr>
<td>King’s Medium B Agar***</td>
<td>White fluidal non-fluorescent colonies</td>
</tr>
</tbody>
</table>

* Kelman 1954 ** Hayward 1960 *** King et al. 1954
groundnut wilt is *Pseudomonas solanacearum* biovar 3.

Table 3: Incidence of wilt caused by *P. solanacearum* on introduced lines and cultivars from ICRISAT

<table>
<thead>
<tr>
<th>Entries</th>
<th>Wilt intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICG (FDRS) 21, 28, 29, 30, 31</td>
<td>10</td>
</tr>
<tr>
<td>34, 38, 41, 43, 44, 47; ICG 7887</td>
<td>20</td>
</tr>
<tr>
<td>ICG 4746, ICG 7895, ICG 1705, Robut 33-1 and NCAC 17096, ICG (FDRS) 16, 27, ICG 7885</td>
<td>30</td>
</tr>
<tr>
<td>ICG (FDRS) 19; JL 24</td>
<td>40</td>
</tr>
<tr>
<td>No. 45; 280/20</td>
<td>90</td>
</tr>
<tr>
<td>Red Spanish</td>
<td>90</td>
</tr>
</tbody>
</table>

Screening for Resistance

Groundnut lines/cultivars received from ICRISAT were evaluated for resistance to bacterial wilt disease in the glasshouse. Results are presented in Table 3. Most of the lines tested showed resistance to bacterial wilt disease. Virginia type cv. Red Spanish was the most susceptible variety followed by No. 45 and 280/20.

References

Status of Bacterial Wilt on Groundnut in Uganda

Asinasi Fina Opio* and C.M. Busolo-Bulafu**

Abstract

Bacterial wilt of groundnut was first reported in Uganda in 1938 at Bukalasa farm and severe losses have been reported in some localities in the Lake Crescent area. Some introduced groundnut entries show a high level of resistance to the disease. A germplasm collection has been made from within Uganda for screening and for subsequent hybridisation work. There is also a need for a more extensive disease survey and for investigation of the mode of transmission of the disease on groundnuts.

GROUNDNUT (Arachis hypogaea) is the second most important pulse crop in Uganda, after beans. It is cultivated mainly in the Eastern and some parts of the Western regions of the country. The crop serves as an important cheap source of protein, and is also being emphasised as one of the crops for export in barter trade.

Bacterial wilt caused by Pseudomonas solanacearum is one of the important diseases of groundnut in Uganda. Other important diseases are the rosette viruses, early leaf spot (Cercospora arachidicola) and late leaf spot (Cercosporidium personatum) (Simbwa-Bunnya 1972).

Wilt of groundnut was first diagnosed and recorded in Uganda in 1938 by Hansford (Uganda Department of Agriculture files) at Bukalasa farm. At the time, the disease caused 10% loss of the crop. Bukalasa farm is 48 kilometres north of Kampala.

In 1963 an outbreak occurred at the same farm, causing more than 40 percent loss of crop (Simbwa-Bunnya 1972). In 1968, 80% of the groundnuts grown at Kawanda were infected by wilt, and in 1976 the disease resulted in 24% loss of the groundnuts which had been grown at Kabanyolo University farm.

Research work on this disease in Uganda has mainly emphasised screening for resistance to the disease. The Principal of Bukalasa Agricultural College initiated a screening trial at Bukalasa farm in 1964. The results of the trial indicated that four numbered Indonesian varieties were highly resistant to the disease. In 1969 and 1970 Simbwa-Bunnya (1972) screened 23 groundnut varieties for resistance to P. solanacearum under field conditions at Bukalasa farm and Kawanda Research Station. He found that one entry from Brazil and the United States Department of Agriculture accessions PI 341884, PI 341885 and PI 341886 were highly resistant to the disease, while local commercial varieties Roxo and Red Beauty were susceptible. It was suggested by Simbwa-Bunnya (1972) that commercially acceptable varieties resistant to bacterial wilt at Kawanda and Bukalasa be developed from the varieties screened. Some crosses were made in 1974 between the Brazilian entry and both Roxo and Red Beauty. From these crosses, several resistant lines were developed by single plant selections and family selections. These lines were evaluated at Kawanda between 1979-1981 (Kayiwa-Male 1981).

At the same time, screening work continued at Kawanda with addition of thirty introductions from ICRISAT (Kayiwa-Male 1981). Nineteen of the ICRISAT lines showed resistance but these lines, together with the crosses and all the breeding material, were lost because of the problems at the station between 1982-1986. Breeding work was reactivated at Namu-
longe Research Station in 1987. A germplasm collection has now been made from within the country for screening and for subsequent hybridisation work.

Biotype identification has also been done in some parts of the country. Biotype 3 and 4 have been identified affecting groundnuts in the Lake Crescent part of the country (Leakey 1963; Opio 1988; Simbwa-Bunnya 1972).

The distribution of bacterial wilt on groundnut in Uganda is not known since no survey has been done. The disease has been reported from the Lake Crescent area in Uganda (Leakey 1963; Opio 1988; Simbwa-Bunnya 1972). Observations and reports have been received from farmers' fields and on all the research stations in this area.

There is therefore need to carry out an extensive survey to determine the distribution of the disease and the extent to which farmers' varieties are affected. Breeding for resistance to the disease needs to be emphasised. In addition, the mode of disease transmission needs to be investigated on groundnuts in Uganda.

References
The Influence of Temperature Regime on the Interaction of Some Isolates of *Pseudomonas solanacearum* with Peanut (*Arachis hypogaea* L.)

Siti Subandiyah* and A.C. Hayward**

INFECTIVITY titration was used to study the influence of temperature regime on the interaction of some isolates of *Pseudomonas solanacearum* with groundnut cv. Chico. Six isolates of biovar 3 and one isolate of aberrant biovar 2 originating from different host plants and different areas in Northern Territory (NT), Queensland (Qld), and New South Wales (NSW), Australia, were tested.

The inoculum was suspended in sterile distilled water at a concentration ranging from 10^3 to 10^{10} cfu mL$^{-1}$. Three week old groundnut seedlings were inoculated at the third leaf axil from the top using sterile microtips containing 20 μL of inoculum for each seedling. The inoculated seedlings were moved into controlled environmental glasshouses with day/night temperatures of 20/15, 25/20, 30/25, or 35/30°C. The experiments were done twice, once in summer and once in winter.

All of the isolates were able to infect groundnut and caused pronounced symptoms at the temperature regimes of 30/25 and 35/30°C. At the temperature regimes of 20/15 and 25/20°C the symptoms were slight. The isolate 0732 (Tomato, NT) and isolate 01017S (*Solanum nigrum*, NSW) caused symptoms only at 30/25 and 35/30°C, while the other isolates could produce symptoms at all the temperature regimes. Each isolate behaved significantly differently when the regimes of 20/15 or 25/20°C were compared with 30/25 or 35/30°C. Most of the isolates did not behave significantly differently when the temperature regime of 30/25°C was compared with 35/30°C except isolate 001; however, all of the isolates developed better at 35/30°C. Disease progress curves showed that all isolates caused less severe symptoms in winter than in summer. High temperature regimes supported the development of all isolates on groundnut but only isolates 0171 (*Solanum melongena*, Qld), 0234 (*Pultenaea villosa*, Qld), 0190 *Xanthium pungens* Qld), 001 (Tomato, Qld), and 0369A (Tomato, NSW) could infect groundnut at a low temperature regime.

* Faculty of Agriculture, Gadjah Mada University, Sekip Unit 1, Yogykarta, Indonesia

** Dept. of Microbiology, University of Queensland 4072, Australia
Seed Infection and Transmission of
Pseudomonas solanacearum on Groundnut

Muhammad Machmud* and Keith J. Middleton**

Eight Indonesian groundnut cultivars with varying degrees of resistance to bacterial wilt were grown at Cikeumeuh Experimental Farm, a site known to be heavily infested with *Pseudomonas solanacearum*, the bacterial wilt pathogen. Many plants were wilted and killed at an early stage of growth, while many others which were either late or slowly infected by the bacterium could survive and produce seeds, although they were wilted. Seeds were harvested from the wilted plants and brought to the laboratory for further tests. Observations based on symptoms or abnormalities were made on the seeds. The presence of the bacterium on or in the seeds was determined through isolation on either SPA or TZC medium. Samples of seeds from the infected plants were also grown in sterile soil to determine the presence of wilted plants originating from the infected seeds.

Some of the harvested pods from the infected plants showed discolouration of the shells and sometimes rot, while others looked healthy. Discolouration was also found on the seedcoat, cotyledon, and rarely on the embryo. Bacterial colonies were isolated from the different parts of the infected seeds. Seedlings grown from seeds of infected plants showed wilting within 2-4 weeks after sowing with intensities ranging from 5 to 8%. This result provided further evidence that *P. solanacearum* was able to be transmitted through groundnut seeds.

* Bogor Research Institute for Food Crops, Jl Cimanggu 3A, Bogor 16111, Indonesia

** QDPI, J Bjelke-Petersen Research Station, Kingaroy, Q 4610, Australia
List of Participants

H. Abdullah, Dept of Plant Protection, Universitas Pertanian Malaysia, 43400 Serdang, Selangor, Malaysia
T.B. Adhikari, Department of Pathology, Inst. of Agric & Animal Sciences, GPO Box 984, Kathmandu, Nepal
A.M. Alvarez, Dept of Plant Pathology, University of Hawaii, 3190 Maile Way, Honolulu Hawaii 96822, USA
E. Boa, Balai Penelitian Tanaman Rempah dan Obat, Jl Cimanggu 3, Bogor 16111, Indonesia
Liao Boshou, Institute of Oil Crops Research, CAAS, Wuhan, Hubei 430062, Peoples' Republic of China
S. Eden-Green, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
P. Ferrar, ACIAR, GPO Box 1571, Canberra ACT 2601, Australia
C.L.L. Gowda, ICRISAT Patancheru P O, Andhra Pradesh 502 324, India
G. Hartman, AVRDC, P O Box 42 Shanhua, Tainan Taiwan 74199, Republic of China
A.C. Hayward, Dept of Microbiology, University of Queensland, Q 4072, Australia
L.Y. He, Head, Dept Plant Bacteriology and Virology, Institute of Plant Protection, CAAS, Beijing 100094, Peoples' Republic of China
B.L. Ho, MARDI Vegetable and Field Crops Res Stn, Box 186 GPO, 41720 Klang, Selangor, Malaysia
K.W. Jayasena, Regional Agricultural Research Station, Angunakolapelessa, Sri Lanka
K.Y. Lum, Fundamental Research Division, MARDI, P O Box 12301 GPO, 50774 Kuala Lumpur, Malaysia
Q.S. Ma, Laboratory of Molecular Genetics, Guangxi Agricultural College, Nanning, Guangxi 530005, Peoples' Republic of China
M. Machmud, Bogor Research Institute for Food Crops, Jl Cimanggu 3a, Bogor 16114, Indonesia
V.K. Mehan, ICRISAT Patancheru P O, Andhra Pradesh 502 324, India
K.J. Middleton, Queensland Department of Primary Industries, P O Box 23, Kingaroy Q 4610, Australia
M.P. Natural, Dept of Plant Pathology, College of Agriculture, UPLB, College, Laguna, Philippines
S. Seal, The Sainsbury Laboratory, John Innes Institute, Colney Lane, Norwich NR4 7UH, United Kingdom
D. Sharma, MARIF, P O Box 66, Malang 65101, Indonesia
S.B. Sharma, ICRISAT Patancheru P O, Andhra Pradesh 502 324, India
P. Smith, ACIAR, GPO Box 1571, Canberra ACT 2601, Australia
S. Subandiyah, Faculty of Agriculture, Gajah Mada University, Yogyakarta, Indonesia
Supriadi, Balai Penelitian Tanaman Rempah dan Obat, Jl Cimanggu 3, Bogor 16111, Indonesia
P. Surin, Div. of Plant Pathology & Microbiology, Dept of Agriculture, Bangkhen, Bangkok 10900, Thailand
Tan Yujun, Institute of Oil Crops Research, CAAS, Wuhan, Hubei 430062, Peoples' Republic of China
J.A. Wightman, ICRISAT Patancheru P O, Andhra Pradesh 502 324, India
M.S. Ying, Miscellaneous Crops Division, MARDI, P O Box 186, 41720 Klang, Malaysia
ACIAR PROCEEDINGS SERIES
RECENT TITLES

No. 29. Sulphur fertiliser policy for lowland and upland rice cropping systems in Indonesia: proceedings of a seminar. (In press).